Diogenes Analytics

Blog

Contact

Average Daily Decisions - Binary Everywhere




35,000

While working on a project involving binary trees as a way to model very simple binary decisions, I began to wonder how many decisions on average does the average person make? A quick Google search for “average daily decisions” led to a number of articles touting a massive 35,000 decisions made everyday by the average person. If you feel skeptical about that number do not worry, you are not alone, but for the purpose of this blog post (which is just a vehicle for some interesting math) it works.

Binary Decisions

If we assume the simplest case, where each decision has only two options and is hence binary (i.e yes/no, stay/leave, etc…), then by evaluating $2^{35000}$ we can calculate all possible combinations of average daily decisions. This turns out to be quite trivial in Python but the number generated is massive:

11216264426175256388964693652046642475015999603103
07925962846876987433806229572209779188677188609150
67172253122239294586767384591202483591042846633577
90142888130680624034585814607076016546439427734943
98518403381193288751292188743712532169386923546678
88573228452791722930501496276029965094320315285551
87436577983062851277410469745608567139909366579565
66469746111413792212471114492429367473665878827967
35927201009360181869548090449208430586002558537785
13474447348260246992725363569636296200542172956803
49740599384295853505234086766542419121570129395853
22171718942708085014958104044477266404590953528034
80409759351579778403804787134778715530068695787724
94368829275005722876096153436994980503006896725138
32507945763551575419840754149882161218079105159169
31296058355630164851784359071127494669283222074133
53257404650050083488235195657145713044874382265777
81319460314230019638799230638057081871734663672402
65604421426513107010948473196209524762691773950068
60089728137230115903159334748094171136406694765273
29446080341148178001265296195316021805148681477164
67201308611922410257184785623984574220342255298176
42664445543007493202585703612920109136171229817456
81957175343141922936485134826626336497227279587258
92126610058212569640784063700779282984622938980268
12990411750228986608976643321886598805113171046563
95540789699516680977202392684276789914715161188677
82352822924243308377756265015766400366227426399536
11441994357027112507951456467393534666075761450676
28827396442329340661606198772601596147118479069815
55511682074767211081480418984013096893347640516785
42663643170722572345132399896869446359151344052435
72762480604761089845797243261181302089548688943313
65453607507519288295265309864744341820577270877762
00340394820526038758313271405611943060961956981396
20742249742572865945366089827671419110759193411663
52175363071177784839296374726988340440987887522213
58744546506459620313265701879094444165574411241309
77370409891594653736823251859124682517277031043231
28363648347707290421815458830762020449942009344715
97419433555460886669514683158782294835583719339608
72754586329601421895713821161318066409000223692776
82503236520566059163264946675716060493980986116470
99334275729756919902824308440105590986397755941092
88705954943665125253442865982355231127404632201632
61245879014781341204185183416719459337965203901015
43748118536410118790035550836902690068668526168082
19275254184890359624967850390329484118026582955350
53925180797255813241027105224502800047595086438354
54945259297954006669161156772407741215919687923515
08503845852216351381110081972186561373912728749852
24621897373350245420380994516020724544202499745858
79190550494416173054761160873350472693271249862605
16983561026795438227020600728288619520814117177705
28422389854821651735852009696717730152778729436111
19824839231319816770689379774456095468173949667899
87251186996707811422248032799422219535107083051242
27363799421539679180728967673114114410468775934221
52945688713991160191611021737989872927451510157268
22218547022338479867123831668414007184446421135338
90165110202470698575561908936698469519334976424847
88622659570403356667179633241699974600510348806567
52215698866004147468007543384940587538556382167212
20643673812444366482362456504621775095896202518709
04898841188506838998982085812986705282881204368171
32860773816122313853948130813230251921982968415127
30720537305920227150568879125520766011144453380819
57138087251364649577414941810442031489238863665798
34787124398732325541936400947921922324384744645616
52722191629967907311686208200248351903348478168441
00180697636548945185235892539389841408811524606417
70921283796106571687526383577889953064253261733232
26274960680960216219102960028405263302598886330186
28305375891618285220508782882611338842731275878541
75484248582048882498125557858125920306386292787238
35483485254750473296980194541065867458935077383923
23421996607913231656848397362914151701957894974678
10095349227873193299483872102375678515342897755263
46734619935570139365779190616173453510382254377092
98478556401979252888063569133020646665934819499396
80739112015954621796114106085447132799082232759611
66589179661782385435957461318229259931327893045338
28383363356461092110800423044314790794896992231782
48683687501488249385596519557203069645096709581886
45088075168106644560431257544176728118781768219553
46599811524789686775964709478098715846117620115798
58215623815258324006388204012818378427843589037565
38464907628379626491288421434342219234668834872293
08028963972048492190130683089566566463181018529665
26328490833747439827904119032916245639081673220885
91889127252086532538428229226767968063684974883094
60235413513359470326004092689017682520064186141095
07995360705772573972731275708416906510736640344299
42403001878604231008920693598288351217301659315821
31317457072454367748583650956576253130067210054679
50263239599963573128170966833596459485470594054051
02124283474625207905597763213573709193563606848255
74278550284038340357647298144899094898271133168654
47875793155056891544606563256766589702676866218885
34463465457992773646476622116318581307270875054045
41399563984830313819915591281741612119429417329516
40522652591934129709428967157080017544140330538582
73522943616164792358531924089907165100306701484327
12763972325775799485825286481400133516019264573109
55859136808314133515107754735562428544642356726768
41603237210812241687536052665878519657776123206459
45317953203949899025785230436050873019865472913198
87850428827698902182286743863112781993346733231417
60751026246180025486488035388598211970594283475582
60924403882323914721058392211463041218706547096512
92150480517979744796149145995685230123495388700708
20012966355339728139274408849521716459092948426591
28954905354322159267117926820697850041400682793221
86372757532580421628797650466823774554568686473333
14422610411670174462939240848367668610105942691312
20288552857163526076764449079143358467248811177148
12522270950807186365733821087694306176042958968844
90084977544929659567184461022910740251389464391358
44399216318835549411126838126783261704809278035444
61311167450783638884973427666080215537106580070439
28249720243513916079996569563432921841777278406477
56868688338727360989163172886489323238997585652519
51009514137482188548042012061521523435484993382991
57282029353179967064377164942748835546916870707604
31537880922382483139603810659045373870143506040896
30400331772242290521676741414173773321830663666605
63642594938979325083343989539954963991637408759155
40557226393254063772186513600988207517458106014148
52500802496986105683287373271794806367143123245389
97947257063186701054894216879190421233280169543080
54961195310471543576875541596792822732843050824483
29361426753689448242172014292030198824855091778420
99194202498216827895424611594441862285639535507941
02403839925364044796949937777857652847211310986881
17620530175439001597148140852656919976794890850841
63835591540737679928771212278481763275754208772981
37664689109606788901024585396260923019017702944272
19412834620915355445629458496766037098722980600113
59194912202425115705121494406084780563923744221710
69515376008012565463302670505995385263221303513470
53559893370317632983761581140435977914006539002503
93927130214734414067930207229185235195850586097786
03401518650550620326753051545747614580723936895386
34489192252905911055853142562229310586132247292859
82108511675197538545543107591029845758824653697851
58705862393041278387627143951823412382455393554986
43761217225880504119662851299148930527923697434631
64993908114960400430059119296947976398009407405475
09568964191495828004794809950399214620396165201252
26380970691002911815754605343645540700882011142560
31321300751205441248817442538742958316975375409575
85442661820017908349013187216468373189047584951611
21401830141527943089517128561131783058164118248154
32827886166425579321938907251878865548599092331811
73763248434983655442492260720577464519806925471408
12084954840538234389818205926112094010928245673872
99273374269351108745561328685098383901142975504084
76668186565332607514834822312643073199665839616285
94426241216929427329760935423260351576715748811585
39280390267974373145001090046327234583192680614897
02566194812795343974773471253332809516088957455803
93316533676869024120633486246155416005193756871294
73023353333213456670151750962859869715041670754513
87695169768869029764006619294849030292423851748453
18238304102690678297798023434163696917541004071485
87452605378554094002090282220394021072470936064125
48011071820877229142588022933758527087240266372148
38808288465387803997890247871140761155168429569325
97903253448598580765003664739244736868758259616497
96614517165670547834775755696158760608406775607449
84941174571636598376568401639536128960430025757987
97236802662716201581420029883003924612698506909721
00110063502071052251328061142006833721921476081652
57450267444117239367467688181279377501685682112973
33070135459986386370743434255380996670141988886630
3004530035715655988218319769620709376

This number has $10,537$ digits and represents all possible combinations of average daily (binary) decisions. Because each decision is binary, then the combination of decisions can be represented as a binary number, where the bit-length is the number of decisions (e.g. in this case $35,000$ bits). This means there is a unique number that describes each combination of decisions.

It is easier to see the relationship between binary numbers and combinations of binary decisions when we look at a smaller number of decisions. For example, instead of $35,000$ decisions, we can look at just $4$:

{}
├── 0
│   ├── 0
│   │   ├── 0
│   │   │   ├── 0
│   │   │   └── 1
│   │   └── 1
│   │       ├── 0
│   │       └── 1
│   └── 1
│       ├── 0
│       │   ├── 0
│       │   └── 1
│       └── 1
│           ├── 0
│           └── 1
└── 1
    ├── 0
    │   ├── 0
    │   │   ├── 0
    │   │   └── 1
    │   └── 1
    │       ├── 0
    │       └── 1
    └── 1
        ├── 0
        │   ├── 0
        │   └── 1
        └── 1
            ├── 0
            └── 1

The binary tree shown above depicts all the possible binary numbers of bit-length $4$. At the root of the tree is the empty set: {}. This represents the initial state where no decisions have been made yet. As we begin to move down the tree, each branch represents a choice (in this case either $0$ or $1$). If we follow the path to the end of the tree, making our binary decisions as we go, we eventually arrive at a unique combination: $0000$, $0001$, $0010$, $0011$, etc… So each path through the tree represents a unique combination of decisions. That combination forms a unique binary number with values from $[0, 2^4 - 1]$.

As stated earlier, assuming the simplest case of two options to choose from (i.e. binary), then each unique combination of $35,000$ decisions has a unique number in the range $[0, 2^{35000} - 1]$. And there are $2^{35000}$ or $10,537$ of these unique numbers, and hence unique paths. So the number $2$ represents some path in this giant hypothetical binary tree. So does the number $2^{35000} - 1 = 10,536$.

Moral

Binary numbers have a powerful role to play in a wide variety of applications. Whenever the problem involves some binary component (e.g. binary decisions), you can rest assured that binary numbers have some relevance. The math depicted here, while assuming the ideal situation where each decision is binary, offers us an example of how binary numbers can be used in modeling combination problems in a very compact, and elegant way.